The Cayley Isomorphism Problem Exercises

- 1. Draw the Cayley graph Cay(Z₉, {1, 3, 6, 8}). Which group automorphisms of Z₉ are contained in Aut(Cay(Z₉, {1, 3, 6, 8}))?
- 2. Draw the Cayley graph $\operatorname{Cay}(Q_8, S)$. Here Q_8 is the **quaternion group** with presentation $\langle x, y : x^4 = y^4 = 1, x^2 = y^2, y^{-1}xy = x^{-1} \rangle$, and $S = \{x, y, x^{-1}, y^{-1}\}$.
- 3. Let Γ be a vertex-transitive digraph with Δ a subdigraph of Γ . Let \mathcal{C} be the collection of all subdigraphs of Γ isomorphic to Δ . If $\mathcal{B} = \{V(C) : C \in \mathcal{C}\}$ is a partition of $V(\Gamma)$, then \mathcal{B} is a complete block system of Aut(Γ).
- 4. Let $G \leq S_n$ be transitive with blocks B and B' such that $B \cup B'$ has order n. Show that $\{B, B'\}$ is a complete block system of G consisting of 2 blocks of size n/2.
- 5. Let $G \leq S_{np}$ have a complete block system \mathcal{B} with blocks of prime size p where p > n. Show that \mathcal{B} is a normal complete block system of G.
- 6. Show that a 2-transitive group is primitive.
- 7. Show that \mathbb{Z}_4 is a CI-group.
- 8. Are the digraphs $Cay(\mathbb{Z}_{17}, \{1, 3, 5, 7, 11\})$ and $Cay(\mathbb{Z}_{17}, \{3, 4, 10, 11, 12\})$ isomorphic?
- 9. Are the digraphs $Cay(\mathbb{Z}_{13}, \{2, 5, 7, 9\})$ and $Cay(\mathbb{Z}_{13}, \{1, 3, 5, 12\})$ isomorphic?
- 10. Show that for a transitive group $G \leq S_n$, its centralizer in S_n is semiregular. That is, the only permutation which fixes a point is the identity.
- 11. Prove

Lemma 1 Let $\overline{A} \leq \operatorname{Aut}(G)$ consist of all automorphisms of G that map H to H. Then $N_{S_n}(G) = \overline{A} \cdot G$.